
Journal of Applied Mechanics and Technical Physics, Vol. 43, No. 5, pp. 748–762, 2002

REGULAR PERTURBATION METHODS

FOR A REGION WITH A CRACK

UDC 539.3+517.97V. A. Kovtunenko

The paper considers a model problem for Poisson’s equation for a region containing a crack or
a set of cracks under arbitrary linear perturbation. Variational formulation of the problem using
smooth mapping of regions yields a complete asymptotic expansion of the solution in the perturbation
parameter, which is a generalized shape derivative. This global asymptotic expansion of the solution
was used to derive representations of arbitrary-order derivatives for the potential energy function,
stress intensity factors, and invariant energy integrals in general form and for basis perturbations of
the region (shear, tension, and rotation). The problem of the local growth of a branching crack for
the Griffith fracture criterion and the linearized problem of optimal location of a rectilinear crack in
a body with the energy function as a cost functional were formulated.

INTRODUCTION

Singular perturbation theory is commonly used to study regions with nonsmooth boundaries, in particular,
regions with cracks (see, for example, [1–3]). Procedures of justifying asymptotic representations are given in [4].
Mapping of a region with a crack based on smooth coordinate transformation reduces the problem to regular
perturbations even for regions with nonsmooth boundaries. In this case, the crack problem is considered in a
variational formulation, which allows this approach to be applied to the general problem, including the nonlinear
crack problem under nonpenetration conditions on the sides [5–7]. This approach generalizes the methods for
optimizing the shape of smooth regions [8, 9] located inside regions with nonsmooth boundaries due to cracks. The
methods proposed can be used to obtain invariant energy integrals (Cherepanov–Rice integral, etc. [10–13]) as a
particular case of the general perturbation of a cracked region. Numerical solution of the crack growth problem
using the formulas obtained is described in [14].

1. LINEAR PERTURBATION OF A REGION WITH A CRACK

1.1. Formulation of the Problem. Let us consider a region Ω ⊂ R2 with a Lipschitzian continuous
boundary ∂Ω and a part of this region ΓD ⊆ ∂Ω with meas ΓD > 0. Let Ω contain a crack defined by a finite set
of Lipschitzian continuous curves Γ0. Specifying a tangent vector τ = (τ1, τ2) and a normal vector ν = (ν1, ν2)
to Γ0, we assume that the direction ν corresponds to the crack side Γ+

0 and the direction −ν to the side Γ−0 . We
define the region with the crack as Ω0 = Ω \ Γ0 with the boundary ∂Ω0 = ∂Ω ∪ Γ

+

0 ∪ Γ
−
0 . We assume that Ω0 is an

open connected set in R2, and the curves comprising Γ0 can be continued until they intersect the part of the outer
boundary ΓD at a finite angle, without intersecting with one another. The first condition eliminates self-intersection
of the curves and allows standard Sobolev spaces to be defined in Ω0; the second condition provides for satisfaction
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of the Korn inequality in Ω0. This construction simulates the following crack geometries in a body: one crack
(probably containing corners or reaching the boundary); a family of disjoint cracks; a branching crack (i.e., a set of
cracks intersecting only at one point at a nonzero angle); a combination of the geometries listed.

Let the external loading be specified by a smooth function f ∈ C∞([−ε0, ε0]×R2). We introduce a Sobolev
space H̃1(Ω0) = {v ∈ H1(Ω0), v = 0 a.e. ΓD} with the homogeneous Dirichlet condition on the part of the external
boundary ΓD. We consider the following model problem in the variational formulation for Poisson’s equation in
the region with a crack: ∫

Ω0

∇u0 · ∇v =
∫
Ω0

f(0)v ∀ v ∈ H̃1(Ω0). (1)

According to the general theory of solvability of variational problems and by virtue of the Korn inequality, there
exists a unique solution u0 ∈ H̃1(Ω0) of problem (1) characterized by the following relations that are valid in the
region Ω0 and on the crack:

−∆u0 = f(0) in Ω0; (2)

∂u0

∂ν
= 0 on Γ±0 . (3)

Because f is assumed to be smooth, from (2) it follows that the solution u0 will be smooth inside the region Ω0 up
to the regular part of the boundary ∂Ω0. The potential energy in problem (1) can be written as

P(0) =
1
2

∫
Ω0

|∇u0|2 −
∫
Ω0

f(0)u0

or, using equality (1) with v = u0, in equivalent form

P(0) = −1
2

∫
Ω0

f(0)u0. (4)

For a fixed small parameter ε ∈ (−ε0, ε0), we consider a perturbation Φε of the region Ω0 with the crack Γ0

that defines a perturbed region Ωε = Φε(Ω0) with a perturbed crack Γε = Φε(Γ0). It is assumed that Ωε and Γε have
the same properties as Ω0 and Γ0 and meas Φε(ΓD) > 0. We use a linear perturbation in the form Φε(x) = x+εΦ(x)
with the specified function Φ = (Φ1,Φ2), where Φi ∈W 1,∞(R2) (i = 1, 2), or, in coordinate form,

y1 = x1 + εΦ1(x), y2 = x2 + εΦ2(x), x = (x1, x2) ∈ Ω0, y = (y1, y2) ∈ Ωε. (5)

Let us formulate the variational problem for Poisson’s equation in the perturbed region Ωε:∫
Ωε

∇uε · ∇v =
∫
Ωε

f(ε)v ∀ v ∈ H̃1(Ωε). (6)

Here H̃1(Ωε) = {v ∈ H1(Ωε), v = 0 a.e. Φε(ΓD)}. Similarly to problem (1), problem (6) has a unique solution
uε ∈ H̃1(Ωε). Thus, we obtain a one-parameter family of problems (6), which depend on the perturbation pa-
rameter ε, and Eq. (1) is a particular case of (6) for ε = 0. The corresponding function of the potential energy
P : (−ε0, ε0) 7→ R is in similar form to (4):

P(ε) = −1
2

∫
Ωε

f(ε)uε. (7)

1.2. Global Asymptotic Expansion of the Solution. We calculate the functional matrix of transfor-
mation (5)

∂y

∂x
=
(

1 + εΦ1,1 εΦ1,2

εΦ2,1 1 + εΦ2,2

)
,

whose determinant is equal to

J(ε) = 1 + ε div Φ + ε2
∣∣∣∂Φ
∂x

∣∣∣. (8)
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Here div Φ = Φ1,1 + Φ2,2 and |∂Φ/∂x| = Φ1,1Φ2,2−Φ1,2Φ2,1. For sufficiently small ε, J(ε) > 0 almost everywhere
in Ω0, the mapping of Φε is biunivocal, and its inverse mapping (Φε)−1 exists. In this case, (Φε)−1(Ωε) = Ω0 and
(Φε)−1(Γε) = Γ0. For an arbitrary function v ∈ H̃1(Ωε), we have v ◦Φε ∈ H̃1(Ω0), where

(v ◦Φε)(x) ≡ v(x+ εΦ(x)) (x ∈ Ω0) (9)

by virtue of the biunivocality of the mapping Φε and the boundedness of the first-order derivatives of Φ. The
inverse statement is also valid: from v ∈ H̃1(Ω0), it follows that v ◦ (Φε)−1 ∈ H̃1(Ωε). The inverse functional
matrix is written as

∂x

∂y
=

(
1− εΦ1,1/J(ε)− ε2|∂Φ/∂x|/J(ε) −εΦ1,2/J(ε)

−εΦ2,1/J(ε) 1− εΦ2,2/J(ε)− ε2|∂Φ/∂x|/J(ε)

)
,

from which we have the gradient transformation

∇ ◦Φε = ∇ :
∂x

∂y
= ∇− ε

J(ε)
∇ :

∂Φ
∂x
− ε2

J(ε)

∣∣∣∂Φ
∂x

∣∣∣∇. (10)

Here ∇ : ∂Φ/∂x = (Φ,1 · ∇,Φ,2 · ∇). Applying the coordinate transformation Φε to the integrals in problem (6)
and using Eq. (10), we obtain∫
Ω0

J(ε)
(
∇(uε ◦Φε)− ε

J(ε)
∇(uε ◦Φε) :

∂Φ
∂x
− ε2

J(ε)

∣∣∣∂Φ
∂x

∣∣∣∇(uε ◦Φε)
)
·
(
∇v − ε

J(ε)
∇v :

∂Φ
∂x
− ε2

J(ε)

∣∣∣∂Φ
∂x

∣∣∣∇v)

=
∫
Ω0

J(ε)(f(ε) ◦Φε)v ∀ v ∈ H̃1(Ω0). (11)

Using the Hölder and Korn inequalities in Eq. (11) with v = uε ◦Φε, we can prove the following uniform estimate
for sufficiently small ε:

‖uε ◦Φε‖H1(Ω0) 6 const. (12)

Thus, the following theorem is valid.
Theorem 1. For sufficiently small ε, the solution of problem (6) mapped by Φε from (5) onto a fixed region

Ω0 is a unique solution of problem (11).
We use representation (8) to obtain the series expansion

1
J(ε)

=
∞∑
n=0

εnJn(Φ), Jn(Φ) =
[n/2]∑
k=0

(−1)n−k(n− k)!
k!(n− 2k)!

(div Φ)n−2k
∣∣∣∂Φ
∂x

∣∣∣k. (13)

Then, in accordance with (8) and (13), the operator on the left side of (11) admits the asymptotic expansion

J(ε)
(
∇u− ε

J(ε)
∇u :

∂Φ
∂x
− ε2

J(ε)

∣∣∣∂Φ
∂x

∣∣∣∇u) · (∇v − ε

J(ε)
∇v :

∂Φ
∂x
− ε2

J(ε)

∣∣∣∂Φ
∂x

∣∣∣∇v)
= ∇u · ∇v +

∞∑
n=1

εnAn(Φ;u, v), (14)

where the bilinear and symmetric (about u and v) forms of An are written as

A1(Φ;u, v) = div Φ∇u · ∇v −
(
∇u :

∂Φ
∂x

)
· ∇v −∇u ·

(
∇v :

∂Φ
∂x

)
, (15)

A2(Φ;u, v) = −
∣∣∣∂Φ
∂x

∣∣∣∇u · ∇v +
(
∇u :

∂Φ
∂x

)
·
(
∇v :

∂Φ
∂x

)
(16)

or, for n = 3, 4, . . . ,

An(Φ;u, v) = Jn−2(Φ)
(
∇u :

∂Φ
∂x

)
·
(
∇v :

∂Φ
∂x

)
+ Jn−3(Φ)

∣∣∣∂Φ
∂x

∣∣∣ [(∇u :
∂Φ
∂x

)
· ∇v +∇u ·

(
∇v :

∂Φ
∂x

)]
+ Jn−4(Φ)

∣∣∣∂Φ
∂x

∣∣∣2∇u · ∇v
if we formally set J−1(Φ) = 0. The forms of An are combinations of the first-order derivatives of u and v and
the coefficients including the powers of the first-order derivatives of Φ; therefore, they are defined correctly for
u, v ∈ H̃1(Ω0) and Φ ∈ [W 1,∞(R2)]2.
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Representation (9) and the smoothness of f lead to the obvious series expansion

f(ε) ◦Φε =
∞∑
n=0

εn

n!
fn(Φ), fn(Φ) =

n∑
k=0

n!
k!(n− k)!

∂n−k

∂Φn−k

(∂kf
∂εk

(0)
)
, (17)

where ∂/∂Φ = Φ ·∇ and ∂m/∂Φm =
m∑
k=0

Φk1Φm−k2 ∂m/∂xk1∂x
m−k
2 (m = 2, 3, . . .). Multiplying (17) by (8), we obtain

the asymptotic expansion of the function on the right side of Eq. (11)

J(ε)(f(ε) ◦Φε) =
∞∑
n=0

εn

n!
Fn(Φ), F0(Φ) = f(0) (18)

with the expansion coefficients

F1(Φ) =
∂f

∂ε
(0) + div(Φf(0)), (19)

F2(Φ) =
∂2f

∂ε2
(0) + 2 div

(
Φ
∂f

∂ε
(0)
)

+ 2
∣∣∣∂Φ
∂x

∣∣∣ f(0) + 2 div Φ
∂f(0)
∂Φ

+
∂2f(0)
∂Φ2

(20)

or, for n = 2, 3, . . . ,

Fn(Φ) = fn(Φ) + n div Φ fn−1(Φ) + n(n− 1)
∣∣∣∂Φ
∂x

∣∣∣ fn−2(Φ).

Following [9], let us construct an asymptotic expansion of the solution of problem (11) in ε

uε ◦Φε =
∞∑
n=0

εn

n!
(n)
u (Φ),

(0)
u (Φ) = u0 in H̃1(Ω0) (21)

with the corresponding derivatives
(1)
u (Φ) ≡ u̇(Φ),

(2)
u (Φ) ≡ ü(Φ), etc. We call these derivatives global derivatives

of the solution of the corresponding order because expansion (21) is sought over the entire initial region Ω0, unlike
the local expansion inside Ω0, which is defined below. We also treat them as complete derivatives of the perturbed
solution uε(x+ εΦ) over ε in the general sense. Using the terminology of shape optimization in smooth regions [8],
we conclude that for f that is independent of ε, the first global derivative u̇(Φ) is a strong material derivative of
the solution in the direction of the velocity field Φ.

We substitute formally expansion (21) into Eq. (11) and use expansions (14) and (18). As a result, collecting
multipliers at identical powers of ε, we establish that the global derivatives are determined from the problems∫

Ω0

∇u̇(Φ) · ∇v =
∫
Ω0

[F1(Φ)v −A1(Φ;u0, v)] ∀ v ∈ H̃1(Ω0); (22)

∫
Ω0

∇ü(Φ) · ∇v =
∫
Ω0

[F2(Φ)v − 2A1(Φ; u̇(Φ), v)− 2A2(Φ;u0, v)] (23)

or, for n = 3, 4, . . . , from the problem∫
Ω0

∇
(n)
u (Φ) · ∇v =

∫
Ω0

(
Fn(Φ)v −

n∑
k=1

n!
(n− k)!

Ak(Φ;
(n−k)
u (Φ), v)

)
. (24)

Problems (22)–(24), together with problem (1), formulate an iterative scheme for successive determination of the

functions
(0)
u (Φ) = u0,

(1)
u (Φ), etc. [Formulas (22) and (23) follow from (24) for n = 1 and 2.] Since the right side

of (24) is a linear continuous functional over H̃1(Ω0), by virtue of the Korn inequality there exists a unique solution
(n)
u (Φ) ∈ H̃1(Ω0) of problem (24) for n = 1, 2, . . . . Being similar to the initial problem (1), Eq. (24) differs from it
only in the fictitious data inside the region and on the boundaries, which are found by the iterative method. Thus,
we defined a procedure of generalized differentiation of the solution with respect to the region perturbation.
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To prove the validity of expansion (21), we consider the corresponding estimates. Subtraction of Eq. (1)
from Eq. (11) using (14) and (18) yields∫

Ω0

∇(uε ◦Φε − u0) · ∇v = ε

∫
Ω0

[F̄1(Φ)v − Ā1(Φ;uε ◦Φε, v)],

where the bar denotes residual members in the corresponding expansions (14) and (18). If we set v = uε ◦Φε − u0

and use the Hölder and Korn inequalities, it is evident from estimate (12) that ‖uε ◦Φε−u0‖H1(Ω0) 6 c ε. We then
use induction. Let the following inequality be satisfied:∥∥∥uε ◦Φε −

m∑
k=0

εk

k!
(k)
u (Φ)

∥∥∥
H1(Ω0)

6 c εm+1, m = 0, . . . , n− 1. (25)

Constructing a partial sum of the nth order from Eqs. (1), (11), and (24) and using expansions (14) and (18), we
obtain ∫

Ω0

∇
(
uε ◦Φε −

n∑
k=0

εk

k!
(k)
u (Φ)

)
· ∇v = −

n∑
m=1

εm
∫
Ω0

Am

(
Φ;uε ◦Φε −

n−m∑
k=0

εk

k!
(k)
u (Φ), v

)

+ εn+1

∫
Ω0

[ 1
(n+ 1)!

F̄n+1(Φ)v − Ān+1(Φ;uε ◦Φε, v)
]
.

Again, substituting v = uε ◦Φε−
n∑
k=0

εk
(k)
u (Φ)/k! and using the Hölder and Korn inequalities, we have the following

equation from estimates (12) and (25):∥∥∥uε ◦Φε −
n∑
k=0

εk

k!
(k)
u (Φ)

∥∥∥
H1(Ω0)

6 c εn+1. (26)

Thus, we proved the following theorem:

Theorem 2. For a sufficiently small ε, there exist global derivatives of the solution
(n)
u (Φ) ∈ H̃1(Ω0) of

an arbitrary order n with respect to linear perturbation of the region, which are unique solutions of problem (1)
for n = 0 and of problem (24) for n = 1, 2, . . . . In this case, the global asymptotic expansion (21) of the solution

of problem (11) with estimate (26) is valid for an arbitrary n.

1.3. Local Asymptotic Expansion of the Solution. The inverse coordinate transformation (Φε)−1 can
be applied to equality (21), from which we obtain the representation

uε = u0 ◦ (Φε)−1 +
∞∑
n=1

εn

n!
(n)
u (Φ) ◦ (Φε)−1 in H̃1(Ωε). (27)

We consider a set K that is relatively compact inside Ω0. For sufficiently small ε, the condition K ⊂ Ωε
is satisfied, and, hence, Eq. (27) is also valid in H1

loc(Ω0). At the same time, from the equilibrium equation (2) it
follows that the solution u0 of problem (1) is smooth inside Ω0; therefore, u0 ◦ (Φε)−1 inside K can be expanded in
a series in ε as follows. We assume that the perturbation function Φ is smooth, i.e., Φ ∈ [C∞(R2)]2. Differentiation
of (5) as an implicit function yields the inverse function x(ε,y) as a solution of the nonlinear ordinary first-order
differential equation for ε:

dx

dε
= −Φ(x) :

(∂(x+ εΦ(x))
∂x

)−1

, x
∣∣∣
ε=0

= y. (28)

Since Φ is assumed to be smooth, a smooth solution of problem (28) exists that can be written as

x =
∞∑
n=0

εn

n!
Xn(y), X0(y) = y, X1(y) = −Φ(y). (29)

Here the functions X2,X3, . . . can be found by sequentially differentiating Eq. (28) with respect to ε, assuming
that ε = 0 and x = y. For example, X2(y) =

[
Φ div Φ + Φ : (∂Φ/∂x − |∂Φ/∂x|(∂Φ/∂x)−1)

]
x=y

, etc. Series

expansion of u0 ◦ (Φε)−1 in ε as a smooth function in K using (29) yields
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u0 ◦ (Φε)−1 =
∞∑
n=0

εn

n!
(0n)
u (Φ) in H1

loc(Ω0), (30)

where
(00)
u (Φ) = u0,

(01)
u (Φ) = −∂u0/∂Φ,

(02)
u (Φ) = ∂2u0/∂Φ2 +X2 · ∇u0, etc. This procedure can be applied to

the following functions in representation (27). For v ∈ C∞0 (Ω0), integration of (22) by parts yields the equation

−∆u̇(Φ) =
∂f

∂ε
(0) + Φ · ∇f(0)− 2

2∑
i=1

∇u0
,i ·Φ,i +∇u0 ·∆Φ in Ω0.

Therefore, by virtue of the assumption of smoothness of f and Φ and local smoothness of u0, the function u̇(Φ)

will also be smooth inside Ω0. Similar reasoning for solutions
(n)
u (Φ) of problem (24) for n = 2, 3, . . . leads us to the

conclusion on the local smoothness of all
(n)
u (Φ) inside the region Ω0. Therefore, similarly to (30), we obtain the

expansions

(n)
u (Φ) ◦ (Φε)−1 =

∞∑
k=0

εk

k!
(nk)
u (Φ), n = 0, 1, . . . in H1

loc(Ω0). (31)

Here
(n0)
u (Φ) =

(n)
u (Φ),

(n1)
u (Φ) = −∂

(n)
u (Φ)/∂Φ,

(n2)
u (Φ) = ∂2

(n)
u (Φ)/∂Φ2 +X2 · ∇

(n)
u (Φ), etc. Substituting (31)

into (27) and collecting terms at the same powers of ε, we obtain a local asymptotic expansion in ε [compare
with (21)] of the perturbed solution

uε =
∞∑
n=0

εn

n!
u(n)(Φ), u(0)(Φ) = u0 in H1

loc(Ω0) (32)

with local derivatives of the solution u(n)(Φ) of the nth order, which are determined as distributions inside Ω0 in
the form

u(1)(Φ) ≡ u′(Φ) = u̇(Φ)−Φ · ∇u0,
(33)

u(2)(Φ) ≡ u′′(Φ) = ü(Φ)− 2
∂u̇(Φ)
∂Φ

+X2 · ∇u0 +
∂2u0

∂Φ2

or, generally,

u(n)(Φ) =
n∑
k=0

n!
k!(n− k)!

u(k(n−k))(Φ)

for n = 0, 1, . . . .
In this case, the first-order local derivative in (33) is defined in L2(Ω0). These derivatives can be treated as

partial derivatives of the perturbed solution uε with respect to the parameter ε. According to shape optimization
theory for smooth regions [8], if f does not depend on ε and the first local derivative in (33) belongs to the class
H̃1(Ω0), this is a strong shape derivative in the direction of the velocity field Φ. Generally, this is incorrect for a
crack; therefore, it is impossible to determine the shape derivative as a solution of any variational problem. Thus,
we proved the following theorem:

Theorem 3. For a small ε and a smooth perturbation function Φ, the local asymptotic expansion (32) of

the perturbed solution uε of problem (6) with local derivatives of the solution u′(Φ), u′′(Φ), . . . with respect to the

linear perturbation of the region is valid.

Because the solution uε of problem (6) is defined in the perturbed region Ωε and, hence, does not depend
on the choice of the perturbed function Φ, the derivatives in expansion (32) in this sense do not depend on Φ.

1.4. Asymptotic Expansion of the Potential Energy. The integral representation of the potential
energy (7) that follows from the above definition is subjected to the coordinate transformation Φε:

P(ε) = −1
2

∫
Ω0

J(ε)(f(ε) ◦Φε)(uε ◦Φε).
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Using expansions (18) and (21) and taking definition (4) into account, we obtain the asymptotic formula

P(ε) =
∞∑
n=0

εn

n!
P

(n)
0 (Φ) [P(0)

0 (Φ) = P(0)] (34)

with the corresponding derivatives of the energy function in the form

P
(1)
0 (Φ) ≡ P′0(Φ) = −1

2

∫
Ω0

[F1(Φ)u0 + f(0)u̇(Φ)], (35)

P
(2)
0 (Φ) ≡ P′′0(Φ) = −1

2

∫
Ω0

[F2(Φ)u0 + 2F1(Φ)u̇(Φ) + f(0)ü(Φ)] (36)

or, generally,

P
(n)
0 (Φ) = −1

2

n∑
k=0

n!
k!(n− k)!

∫
Ω0

Fn−k(Φ)
(k)
u (Φ). (37)

It follows from (18) and (37) that

P(ε)−
n∑
k=0

εk

k!
P

(k)
0 (Φ) = −1

2

n∑
k=0

εk

k!

∫
Ω0

Fk(Φ)
(
uε ◦Φε −

n−k∑
m=0

εm

m!
(m)
u (Φ)

)

− 1
2

εn+1

(n+ 1)!

∫
Ω0

F̄n+1(Φ)(uε ◦Φε)

with the residual term F̄n+1(Φ) in expansion (18). Using estimates (12) and (26), we have∣∣∣P(ε)−
n∑
k=0

εk

k!
P

(k)
0 (Φ)

∣∣∣ 6 c εn+1 (n = 0, 1, . . .). (38)

The order of the global derivatives of the solution included in formulas (35)–(37) can be reduced by unity.
We set v = u̇(Φ) in (1) and v = u0 in (22). Then, we have∫

Ω0

f(0)u̇(Φ) =
∫
Ω0

∇u0 · ∇u̇(Φ) =
∫
Ω0

∇u̇(Φ) · ∇u0 =
∫
Ω0

[F1(Φ)u0 −A1(Φ;u0, u0)];

therefore, Eq. (35) takes the equivalent form

P′0(Φ) =
∫
Ω0

[
− F1(Φ)u0 +

1
2
A1(Φ;u0, u0)

]
. (39)

Assuming that v = ü(Φ) in (1), v = u̇(Φ) in (22), and v = u0 in (23), we obtain the following formula from (36):

P′′0(Φ) =
∫
Ω0

[
−F2(Φ)u0 +A2(Φ;u0, u0)− |∇u̇(Φ)|2

]
. (40)

Similarly, substitution of v =
(n)
u (Φ) in (1), v =

(n−1)
u (Φ) in (22), and v = u0 in (24) yields the following relation

for the nth order derivative from (37):

P
(n)
0 (Φ) =

∫
Ω0

(
− Fn(Φ)u0 − 1

2

n−1∑
k=1

Fn−k(Φ)
(k)
u (Φ)− n

2
∇

(n−2)
u (Φ) · ∇u̇(Φ)

+
1
2

n∑
k=2

n!
(n− k)!

Ak(Φ;
(n−k)
u (Φ), u0)

)
, n = 2, 3, . . . . (41)
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Thus, we proved the following theorem:
Theorem 4. For a small ε, derivatives of the potential energy P

(n)
0 (Φ) (n = 1, 2, . . .) with respect to a

linear perturbation of the region exist that are defined by formulas (35)–(37) or (39)–(41) and give the asymptotic

expansion (34) in ε of the potential energy function with estimate (38).
In addition to Theorem 4, the definition of the potential energy leads to the following lemma:
Lemma 1. If two different perturbations Φε = I + εΦ and Ψε = I + εΨ map a region with a crack Ω0

onto the same perturbed region Ωε for any ε, then P
(n)
0 (Φ) = P

(n)
0 (Ψ) for all n.

Indeed, under the conditions of Lemma 1 for Φε and Ψε, we formulate the same perturbation problem
(6); therefore, because of the uniqueness of its solution, we obtain the same function of the potential energy P(ε)
from (7). Hence, from the corresponding expansions (34) derived for Φ and Ψ, we obtain the statement formulated
as Lemma 1.

Furthermore, if the local expansion of solution (32) holds under conditions of Theorem 3 in a set K ⊆ Ω0

and f(ε) ≡ 0 in Ωε \K for all ε, then from definition (7) we obtain the following energy derivatives:

P
(n)
0 (Φ) = −1

2

n∑
k=0

n!
k!(n− k)!

∫
K

∂kf

∂εk
(0)u(n−k)(Φ) (n = 1, 2, . . .).

Let ∂f/∂ε
∣∣∣
ε=0

= 0. Then, the first-order derivative of the potential energy is a linear continuous functional L1

with respect to Φ. By virtue of formulas (39), (19), and (15), it is written as

L1(Φ) =
∫
Ω0

[
−div(Φf(0))u0 +

1
2

div Φ|∇u0|2 −
(
∇u0 :

∂Φ
∂x

)
· ∇u0

]
, (42)

and the global first-order derivative of the solution u̇(Φ) as a solution of the linear (in this case, with respect to Φ)
problem (22) is also linear with respect to Φ. In addition, let ∂2f/∂ε2

∣∣∣
ε=0

= 0. Then, the second-order derivative of

the energy function from representation (40) is associated with the quadratic potential L2, which, according to (16)
and (20), can be represented in symmetric form:

L2(Φ,Ψ) =
∫
Ω0

{
−
[(∣∣∣∂(Φ1,Ψ2)

∂x

∣∣∣+
∣∣∣∂(Ψ1,Φ2)

∂x

∣∣∣)f(0)

+ div Φ(Ψ · ∇f(0)) + div Ψ(Φ · ∇f(0)) +
2∑

i,j=1

ΦiΨj
∂2f(0)
∂xi∂xj

]
u0

− 1
2

(∣∣∣∂(Φ1,Ψ2)
∂x

∣∣∣+
∣∣∣∂(Ψ1,Φ2)

∂x

∣∣∣)|∇u0|2 +
2∑

i,j,k=1

Φi,kΨj,ku
0
,iu

0
,j −∇u̇(Φ) · ∇u̇(Ψ)

}
. (43)

Thus, the following lemma is valid.
Lemma 2. If ∂f/∂ε

∣∣∣
ε=0

= 0, the first-order derivative of the potential energy P′0(Φ) is associated with the

linear continuous functional L1(Φ) from formula (42). If ∂f/∂ε
∣∣∣
ε=0

= ∂2f/∂ε2
∣∣∣
ε=0

= 0, the second-order derivative

of the potential energy P′′0(Φ) is associated with the bilinear symmetric continuous functional L2(Φ,Φ) from (43).
1.5. Invariant Energy Integral. Let K be the region with a piecewise-smooth boundary ∂K and K ⊆ Ω0,

in which the following conditions hold:
(a) the solution u0 ∈ H2 in K;
(b) f = 0 or Φ = 0 in Ω \K;
(c) Φ(x) is such that the relation (1/2) div Φ|q|2 − (q : ∂Φ/∂x) · q = 0 is valid for any vector q = (q1, q2)

almost everywhere in Ω \K.
The condition (c) is satisfied, for example, for the following vectors Φ: (c1, c2), c(x1, x2), and c(−x2, x1) and

their linear combination (c, c1, and c2 are arbitrary constants). Let the conditions of Lemma 2 be satisfied. We
consider the first-order derivative of the potential energy, which in this case is equal to L1(Φ) [see (42)]. By virtue
of the assumptions (b) and (c), the integral from (42) over the region Ω0 \K is zero, and, hence, the only integral
over K is retained, which can be integrated by parts by virtue of the assumption (a).
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As a result, we have the relation

L1(Φ) =
∫
K

∂u0

∂Φ
(f(0) + ∆u0) +

∫
∂K

[1
2

(Φ · θ)|∇u0|2 − ∂u0

∂Φ
∂u0

∂θ

]
,

where θ = (θ1, θ2) is an outward normal vector to the boundary ∂K. The integral over the region K vanishes by
virtue of the equilibrium equation (2). Thus, we have the integral only over the contour ∂K:

I(Φ) =
∫
∂K

[1
2

(Φ · θ)|∇u0|2 − ∂u0

∂Φ
∂u0

∂θ

]
. (44)

Lemma 3. Let ∂f/∂ε
∣∣∣
ε=0

= 0. If there exists a set of regions {K} for which the conditions (a)–(c) are

satisfied, then the first-order derivative of the potential energy P′0(Φ) with respect to perturbation of the region has

the form of the invariant integral I(Φ) from (44) over an arbitrary contour ∂K, and this integral is determined by

selection of the perturbing function Φ.

2. CRACK GROWTH

2.1. Perturbation of Local Shear along a Crack. Let a crack Γ0 occupy a straight interval of length L
with tips at the points O = (0, 0) and C = (Lτ1, Lτ2) [τ = (τ1, τ2) is a directing tangent vector], and ν = (ν1, ν2) is
a normal vector to Γ0. We choose a patch function χ ∈ W 1,∞(R2) that is finite with support suppχ ⊂ Ω and is
equal to unity in some neighborhood O of the crack tip C and the second tip lies outside suppχ. For example, if
Bδ is a circle of radius δ with center at the point C, we can choose χ(r) ≡ 1 inside Bδ/2 and χ(r) ≡ 0 outside Bδ
for r = |x− Lτ |.

Relations (5) with Φ = τχ define a local shear transformation along the crack that maps Γ0 onto a rectilinear
crack Γε of length L+ε with tips at the points O and ((L+ε)τ1, (L+ε)τ2). The crack length is varied by varying the
parameter ε. In this case, div Φ = ∂χ/∂τ and |∂Φ/∂x| = 0. Then, according to Theorem 2, the global derivatives

of the solution
(n)
u (τχ) ∈ H̃1(Ω0) (n = 1, 2, . . .) are determined from problems (22)–(24), which in this case take

the simpler form∫
Ω0

∇u̇(τχ) · ∇v=
∫
Ω0

[(∂f
∂ε

(0) +
∂

∂τ

(
χf(0)

))
v − ∂χ

∂τ
∇u0 · ∇v +∇χ ·

(
∇u0 ∂v

∂τ
+∇v ∂u

0

∂τ

)]
∀ v ∈ H̃1(Ω0); (45)

∫
Ω0

∇
(n)
u (τχ) · ∇v =

∫
Ω0

{
Fn(τχ)v + n

[
∇χ ·

(
∇

(n−1)
u (τχ)

∂v

∂τ
+∇v ∂

(n−1)
u

∂τ
(τχ)

)

− ∂χ

∂τ
∇

(n−1)
u (τχ) · ∇v

]
− |∇χ|2

n∑
k=2

n!
(n− k)!

(
−∂χ
∂τ

)k−2 ∂
(n−k)
u

∂τ
(τχ)

∂v

∂τ

}
. (46)

By formal integration of Eq. (45) by parts, we obtain the following relations for the region Ω0 and on the crack by
virtue of (2) and (3):

−∆u̇(τχ) =
∂f

∂ε
(0)−∆

(
χ
∂u0

∂τ

)
in Ω0,

∂u̇

∂ν
(τχ) =

∂χ

∂ν

∂u0

∂τ
on Γ0. (47)

Similarly, from (46) for n = 2, 3, . . . , we obtain the equalities

−∆
(n)
u (τχ) = Fn(τχ) + n

[∂χ
∂τ

∆
(n−1)
u (τχ)− 2∇χ · ∇

(∂ (n−1)
u

∂τ
(τχ)

)

−∆χ
∂

(n−1)
u

∂τ
(τχ)

]
+

n∑
k=2

n!
(n− k)!

∂

∂τ

[
|∇χ|2

(
−∂χ
∂τ

)k−2 ∂
(n−k)
u

∂τ
(τχ)

]
,

(48)

∂
(n)
u

∂ν
(τχ) = n

(∂χ
∂ν

∂
(n−1)
u

∂τ
(τχ)− ∂χ

∂τ

∂
(n−1)
u

∂ν
(τχ)

)
.
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It follows from representation (47) that if u0 ∈ H2(Ω0), the solution of problem (45) is a function
u̇(τχ) = χ∂u0/∂τ + u′, where u′ ∈ H̃1(Ω0) is a solution of the variational problem∫

Ω0

∇u′ · ∇v =
∫
Ω0

∂f

∂ε
(0)v ∀ v ∈ H̃1(Ω0).

In this case, according to definition (33), the first-order local derivative u′(τχ) coincides with u′, and for f that
does not depend on ε, there exists a strong shape derivative that is identically equal to zero.

Following Lemma 1, the derivatives of the potential energy function for the perturbing function τχ with
respect to the crack length do not depend on the choice of the patch function χ and are determined in accordance
with (39)–(41):

P′0(τχ) =
∫
Ω0

[
−
(∂f
∂ε

(0) +
∂

∂τ

(
χf(0)

))
u0 +

1
2
∂χ

∂τ
|∇u0|2 − ∂u0

∂τ
∇χ · ∇u0

]
. (49)

The following derivatives are similar in form. Let ∂f/∂ε
∣∣∣
ε=0

= 0. We set K = (Ω0 \ O) ∩ suppχ. It can easily

be shown that inside K, the solution u0 of problem (1) has additional H2-smoothness, i.e., the condition (a) of
Lemma 3 is satisfied. Outside suppχ, the transform τχ ≡ 0, and in O, τχ ≡ τ , and let f(0) ≡ 0. In this case,
the conditions (b) in Ω \K and (c) in Ω \K are satisfied; therefore, equality (44) holds on the boundary consisting
of the contour ∂O and the internal part of the crack Γ0 ∩K. Since, on the crack, θ = ∓ν, then, χτ · θ = 0 and
∂u0/∂θ = 0 by virtue of the Neumann boundary condition (3). Thus, for f(0) ≡ 0 in the neighborhood of the
crack tip, the first-order derivative of the potential energy with respect to the local shear perturbation along the
crack P′0(τχ) [see (49)] is the invariant energy integral (44) written as

I(τχ) =
∫
∂O

[1
2

(τ · θ)|∇u0|2 − ∂u0

∂τ

∂u0

∂θ

]
, (50)

where ∂O is any closed contour from this neighborhood, which might contain part of the crack. Formula (50) is
known in fracture mechanics as the Cherepanov–Rice integral independent of the path of integrating.

2.2. Asymptotic Behavior of the Stress Intensity Factors. We use the global asymptotic method to
determine the stress intensity factors (SIF). Let the crack tip O reach the external boundary ∂Ω, so that we can
consider only one crack tip C. There is a well-known theorem (see [15]) representing the solution of problem (1)
for a rectilinear crack as the sum of the singular and regular functions

u0 = K(0)χ(r)
√
r sin (ϕ/2) + w0, (51)

where w0 ∈ H2(Ω0) is a regular function and (r, ϕ) are polar coordinates in the neighborhood of C, i.e., x · τ − L
= r cosϕ and x · ν = r sinϕ (|ϕ| 6 π). In this case, the constant K(0) in (51) is determined uniquely and is known
in fracture mechanics as the stress intensity factor. To determine K(0), we construct the auxiliary weight function

ζ = (χ(r)/(2
√
r)) sin (ϕ/2) + V, (52)

where V ∈ H̃1(Ω0) is a unique solution of the variational problem [compare with (22) and (45)]∫
Ω0

∇V · ∇v = −
∫
Ω0

A1

(
τχ;
√
r sin

ϕ

2
, v
)

∀ v ∈ H̃1(Ω0). (53)

By virtue of

∆
(√

r sin
ϕ

2

)
= 0,

∂

∂τ

(√
r sin

ϕ

2

)
= − 1

2
√
r

sin
ϕ

2
,

∂χ(r)
∂ν

= 0,

integration of Eq. (53) by parts yields the following relations similar to (47):

−∆V = ∆
(
χ(r)

1
2
√
r

sin
ϕ

2

)
in Ω0,

∂V

∂ν
= 0 on Γ0.

Therefore, ζ 6≡ 0 is a solution ζ ∈ L2(Ω0) of the problem

∆ζ = 0 in Ω0,
∂ζ

∂ν
= 0 on Γ0. (54)
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Let the patch function χ(r) be such that χ(r) ≡ 1 for 0 6 r 6 δ/2, i.e., in the circle Bδ/2. From representa-
tion (52) it follows that ζ is a function of the class H1 outside the neighborhood Bδ/2 (crack tip), and, hence, the
Green formula can be applied to the region Ω0 \Bδ/2. Taking (2), (3), and (54) into account, we obtain∫

Ω0\Bδ/2

f(0)ζ = −
∫

Ω0\Bδ/2

∆u0ζ =
∫

∂Bδ/2

( ∂ζ
∂θ

u0 − ∂u0

∂θ
ζ
)
,

where θ = −(cosϕ, sinϕ) is a normal to the region boundary R2 \Bδ/2. Substituting representations (51) and (52)
into the last equation, we calculate the integral∫

Ω0\Bδ/2

f(0)ζ =
K(0)

2

∫
|ϕ|<π

sin2 ϕ

2
dϕ+ Iδ =

π

2
K(0) + Iδ, (55)

where

Iδ =
δ

2

∫
|ϕ|<π

[∂V
∂θ

w0 − ∂w0

∂θ
V +

∂V

∂θ
K(0)

√
r sin

ϕ

2
− V ∂

∂θ

(
K(0)

√
r sin

ϕ

2

)

+ w0 ∂

∂θ

( 1
2
√
r

sin
ϕ

2

)
− ∂w0

∂θ

1
2
√
r

sin
ϕ

2

]
r=δ/2

dϕ.

Because the integrand in Iδ has an integrable singularity for r = 0, it follows that Iδ → 0 as δ → 0. Thus, due to
the boundedness of f(0), passing to the limit in (55) as δ → 0, we obtain the following formula for the SIF:

K(0) =
2
π

∫
Ω0

f(0)ζ. (56)

For the global derivatives u̇(τχ), . . . ,
(n)
u (τχ) as solutions of problems (45) and (46) similar to (1), the following

representation in the form of (51) is also valid:

(n)
u (τχ) = K(n)χ(r)

√
r sin (ϕ/2) + wn, wn ∈ H2(Ω0), n = 1, 2, . . . . (57)

We require additional smoothness of the patch χ ∈W 2,∞(R2). Then, according to (56), from relations (47) and (48)
taking into account that ∂χ(r)/∂ν = 0 on Γ0, we obtain the corresponding formulas for the coefficients K(n):

K(1) =
2
π

∫
Ω0

[∂f
∂ε

(0) + χ
∂f(0)
∂τ

− 2∇χ · ∇
(∂u0

∂τ

)
−∆χ

∂u0

∂τ
(τχ)

]
ζ,

K(n) =
2
π

∫
Ω0

{
Fn(τχ) + n

[∂χ
∂τ

∆
(n−1)
u (τχ)− 2∇χ · ∇

(∂ (n−1)
u

∂τ
(τχ)

)
(58)

−∆χ
∂

(n−1)
u

∂τ
(τχ)

]
+

n∑
k=2

n!
(n− k)!

∂

∂τ

[
|∇χ|2

(
−∂χ
∂τ

)k−2 ∂
(n−k)
u

∂τ
(τχ)

]}
ζ, n > 2.

The integrals in (58) are defined correctly because χ is twice differentiable, f is smooth, and ∇χ ≡ 0 in the
neighborhood of the crack tip Bδ/2, where the second derivatives of the solutions u0, u̇(τχ), . . . are not defined.
Summing up representations (51) and (57) multiplied by εn/n! over n and applying Theorem 2, from (21) we obtain
a representation of the mapped solution of the perturbed problem (6) in the form

uε ◦Φε = Kεχ(r)
√
r sin (ϕ/2) + wε [wε ∈ H2(Ω0)] (59)

with the coefficient

Kε =
∞∑
n=0

εn

n!
K(n) [K(0) = K(0)]. (60)
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At the same time, uε as a solution of problem (6) inside Ωε is also written as the sum

uε = K(ε)χ(ry)
√
ry sin (ϕy/2) +W ε, W ε ∈ H2(Ωε), (61)

where the polar coordinates ry and ϕy are defined in the neighborhood of the tip Cε = ((L + ε)τ1, (L + ε)τ2)
of the perturbed crack Γε, i.e., y · τ − (L + ε) = ry cosϕy and y · ν = ry sinϕy (|ϕy| 6 π). Applying the
transformation y = x + ετχ(r) in the neighborhood O where χ ≡ 1, we obtain x · τ − L = ry(x) cosϕy(x)
and x · ν = ry(x) sinϕy(x), from which ry(x) = r, ϕy(x) = ϕ in O. Therefore, from (61), we obtain the local
representation uε ◦ Φε = K(ε)

√
r sin (ϕ/2) + W ε(x + ετ ) in O. Comparing this representation with Eq. (59), we

have K(ε) = Kε by virtue of the uniqueness of the solution uε. Thus, we proved the following theorem:
Theorem 5. If the representation (51) of the solution of problem (1) and the similar representation (61)

of the solution of the perturbed problem (6) are valid, the SIF admits asymptotic expansion (60) with derivatives

that can be determined from relations (56) and (58) for χ ∈W 2,∞(R2).
2.3. Local Tensile Perturbation. For a rectilinear crack Γ0 of length L with tips O = (0, 0) and

C = (Lτ1, Lτ2), we consider a local tensile perturbation with Φ = xχ/L, which maps Γ0 onto a crack Γε of length
L+ ε similarly to the shear τχ (see Sec. 2.1). Then,

div Φ = div
(x
L
χ
)
,

∣∣∣∂Φ
∂x

∣∣∣ =
1
2

div
( x
L2

χ2
)
.

The global derivatives corresponding to tension
(n)
u (xχ/L) ∈ H̃1(Ω0) (n = 1, 2, . . .) are obtained as solutions of

problems (22)–(24) and the derivatives of the energy function P
(n)
0 (xχ/L) (n = 1, 2, . . .) are calculated by the

formulas (39)–(41) for Φ = xχ/L. In this case, by virtue of Lemma 1,

P
(n)
0 (xχ/L) = P

(n)
0 (τχ) (n = 1, 2, . . .). (62)

We construct an invariant integral that corresponds to the perturbation xχ/L and assume that ∂f/∂ε
∣∣∣
ε=0

= 0 and
f ≡ 0 in O, where χ ≡ 1. In O, we have

1
2

div
(x
L

)
−
(
q :

∂

∂x

(x
L

))
· q = 0

for any vector q = (q1, q2). In addition, χ is a finite function in the neighborhood of the crack tip. Thus, according
to Lemma 3, the valid representation of the first-order derivative P′0(xχ/L) in the form of integral (44) over the
contour consisting of ∂O and the interior of the crack Θ = Γ0 ∩ (suppχ \ O). The integrand in this part of the
crack is bounded due to additional local smoothness of the solution u0 outside the crack tip. At the same time, by
virtue of Lemma 1, the derivative does not depend on the patch function χ, and, hence, we can pass to the limit
meas Θ→ 0 and obtain

I
(x
L
χ
)

=
∫
∂O

[1
2

(x
L
· θ
)
|∇u0|2 −

(x
L
· ∇u0

)∂u0

∂θ

]
. (63)

In addition, by virtue of (62), we have I(xχ/L) = I(τχ).
2.4. Branching Crack. Let a branching crack Γ0 consist of N rectilinear intervals of length Li > 0

(i = 1, . . . , N) that intersect at a nonzero angle at the tip O = (0, 0). The directing tangent vectors are denoted
by τ i = (τ i1, τ

i
2) and the tips of the intervals are denoted by Ci = (Liτ i1, Liτ

i
2) (i = 1, . . . , N). We choose finite

patch functions χi ∈ W 1,∞(R2) with disjoint supports in the vicinity of the corresponding tips Ci (i = 1, . . . , N).

We consider a perturbation of the crack in the form of a linear combination Φ =
N∑
i=1

aiτ
iχi with several unknown

constants ai (i = 1, . . . , N). Then, the coordinate transformation (5) with a small parameter ε maps Γ0 onto a
branching crack Γε that consists of N rectilinear intervals of length Li + εai (i = 1, . . . , N). The corresponding
potential energy function admits the asymptotic expansion (34) in ε:

P(ε) = P(0) + εP′0(Φ) + ε2P′′0(Φ)/2 + o(ε2). (64)
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We assume that ∂f/∂ε
∣∣∣
ε=0

= ∂2f/∂ε2
∣∣∣
ε=0

= 0. Then, according to Lemma 2, the first derivative of the potential

energy P′0(Φ) is represented as a linear, continuous (with respect to Φ) functional L1(Φ) from (42) and, in this

case, L1(Φ) =
N∑
i=1

aiL1(τ iχi), where

L1(τ iχi) =
∫
Ω0

(
− ∂

∂τ i
(χif(0))u0 +

1
2
∂χi
∂τ i
|∇u0|2 − ∂u0

∂τ i
∇χi · ∇u0

)
, i = 1, . . . , N.

The second-order derivative P′′0(Φ) is obtained in a similar manner, as a quadratic functional L2(Φ,Φ) [see (43)].
For the branching crack, it is written as

L2(Φ,Φ) =
N∑

i,j=1

aiajL2(τ iχi, τ jχj).

Because the supports suppχi and suppχj do not intersect if i 6= j, the functional L2(Φ,Φ) is written as

L2(τ iχi, τ jχj) =
∫
Ω0

{[
− ∂

∂τ i

(
χ2
i

∂f(0)
∂τ i

)
u0 + |∇χi|2

∣∣∣∂u0

∂τ i

∣∣∣2]δij −∇u̇(τ iχi) · ∇u̇(τ jχj)
}
,

where i, j = 1, . . . , N and δij is the Kronecker symbol. Thus, Eq. (64) becomes

P(ε) = P(0) + ε

N∑
i=1

aiL1(τ iχi) +
ε2

2

N∑
i,j=1

aiajL2(τ iχi, τ jχj) + o(ε2). (65)

We determine the quantities εi = εai (i = 1, . . . , N), which are variations of the crack length.
To describe the crack growth, we use the Griffith energy fraction criterion. The total energy E can be

written as the sum of the potential energy P and the surface energy S, which according to the Griffith hypothesis
is distributed uniformly over the crack with some constant density γ > 0:

S(ε) ≡
∫
Γε

γ = S(0) + γε
N∑
i=1

ai, S(0) ≡
∫
Γ0

γ = γ
N∑
i=1

Li. (66)

We define an approximate quadratic function of the total energy T : E(ε) = T (ε) + o(ε2), which, according to (65)
and (66), depends on N parameters ε1, . . . , εN :

T (ε1, . . . , εN ) = S(0) +
N∑
i=1

εi

(
γ + L1(τ iχi)

)
+

1
2

N∑
i,j=1

εiεjL2(τ iχi, τ jχj). (67)

According to the Griffith criterion, the crack can only grow, i.e., the conditions εi > 0 (i = 1, . . . , N) must be
satisfied. Using the Newton method and minimizing the quadratic function in (67) over the unknown positive
parameters ε1, . . . , εN , we obtain the following system of algebraic variational inequalities

εi > 0,
(
γ + L1(τ iχi) +

N∑
j=1

εjL2(τ iχi, τ jχj)
)

(ε̄− εi) > 0 ∀ ε̄ > 0, i = 1, . . . , N (68)

which describes local growth of the branching crack. If γ+L1(τ iχi) > 0 for all i = 1, . . . , N , then ε1 = 0, . . . , εN = 0
is a solution of (68). Hence, the crack is stationary. Therefore, the growth condition of the crack Γ0 follows from
(68): there exists i such that γ+L1(τ iχi) < 0. In this case, to seek the local crack growth from (68), it is necessary
that the condition of solvability of the system of variational inequalities det{L2(τ iχi, τ jχj)}ni,j=1 > 0 (n = 1, . . . , N)
be satisfied. Particular cases of (68) are a two-parametric system that describes the growth of a rectilinear crack
(two tips) and a variational inequality with one parameter for a rectilinear crack whose one tip reaches the external
boundary ∂Ω.
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3. LOCATION OF A CRACK IN A BODY

3.1. Invariant Energy Integrals. We consider the general case of geometry of a crack Γ0 (see Sec. 1.1).
We choose a patch function η ∈ W 1,∞(R2) that is finite in Ω and set η ≡ 1 in the vicinity of the crack D,
i.e., Γ0 ⊂ D ⊂ supp η ⊂ Ω. We assume that ∂f/∂ε

∣∣∣
ε=0

= 0. If we assume that f(0) ≡ 0 in D, the condition

(b) of Lemma 3 will be satisfied. The condition (a) is satisfied because of the local smoothness of u0 outside the
neighborhood of singular points of the crack (tip or salient point), and, hence, in Ω \ D. We consider a shear
perturbation of the crack in the arbitrary direction p = (p1, p2), i.e., Φ = pη. Then, ∂Φ/∂x ≡ 0 in D by virtue of
η ≡ 1. Hence, the condition (c) is satisfied. According to Lemma 3 and taking the finite nature of η into account,
from (44) we obtain the invariant integral

I(pη) =
∫
∂D

(1
2

(p · θ)|∇u0|2 − ∂u0

∂p

∂u0

∂θ

)
(69)

over an arbitrary closed contour ∂D in the neighborhood of the entire crack where f(0) ≡ 0. For tensile perturbation
of the crack Φ = xη, the condition (c) is satisfied by virtue of div Φ = 2, q : ∂Φ/∂x = q ∀ q in D, and the following
invariant integral holds:

I(xη) =
∫
∂D

(1
2

(x · θ)|∇u0|2 − (x · ∇u0)
∂u0

∂θ

)
. (70)

Similarly, for perturbation of the linearized rotation of the crack Φ = (−x2, x1)η, the condition div Φ = 0,
(q : ∂Φ/∂x) · q = (q2,−q1) · (q1, q2) = 0 ∀ q in D is satisfied, from which we obtain the integral

I((−x2, x1)η) =
∫
∂D

(1
2

(x1θ2 − x2θ1)|∇u0|2 − (x1u
0
,2 − x2u

0
,1)
∂u0

∂θ

)
. (71)

Thus, we proved the following theorem:
Theorem 6. Let ∂f/∂ε

∣∣∣
ε=0

= 0. For a rectilinear crack, the first-order derivative of the potential energy

with respect to the crack length is represented as equal invariant integrals for local shear along the crack I(τχ)
(50) and local tension I(xχ/L) (63) along any closed contour in the neighborhood of the crack tip where f(0) ≡ 0.

In the neighborhood of the entire crack where f(0) ≡ 0, for the crack perturbed by shear in an arbitrary direction,

tension, and linearized rotation, the following invariant integrals are valid: I(pη), I(xη), and I((−x2, x1)η) [see
(69), (70), and (71)], respectively.

3.2. Problem of Optimization of the Crack Shape. We consider a rectilinear crack Γ0 of length L and
formulate a linearized problem of optimization of the location of the crack Γ0 in the region Ω with the potential
energy P as a cost functional. Let η, as above, be a patch function finite in Ω, η ≡ 1 in D, and Γ0 ⊂ D. The location
of the crack in D can be described as a linear combination of shear and rotation. Instead of rotation, one can use
linearized rotation and compensate for the variation in length due to tension. Thus, according to Theorem 6, we
consider the linear combination of the four basic perturbations of the crack with the unknown constants a1, . . . , a4:

Φ =
4∑
i=1

aiΦi, Φ1 = (1, 0)η, Φ2 = (0, 1)η, Φ3 = (−x2, x1)η, Φ4 = xη. (72)

For a small parameter ε, we use (72) as a perturbation function for the linear coordinate transformation (5) of the
region Ω0 with a fixed rectilinear crack Γ0 of length L in D. This transformation also maps Γ0 onto a rectilinear
crack Γε of length

|Γε| = L
√

(εa3)2 + (1 + εa4)2. (73)
According to Theorem 4, we have an asymptotic expansion of the potential energy function (64) in ε. Let
∂f/∂ε

∣∣∣
ε=0

= ∂2f/∂ε2
∣∣∣
ε=0

= 0. Then, in accordance with Lemma 2 and by virtue of linearity of (72), Eq. (64) can
be represented as

P(ε) = P(0) + ε
4∑
i=1

aiL1(Φi) +
ε2

2

4∑
i,j=1

aiajL2(Φi,Φj) + o(ε2). (74)

In this case, we require that the initial crack length L be unchanged for any ε, which, in view of equality (73), leads
to the condition

εa4 =
√

1− (εa3)2 − 1 = −(εa3)2/2 + o(ε2). (75)
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We substitute (75) into (74) and omit terms of order o(ε2). As a result, we obtain a quadratic (with respect
to ε) approximation P of the energy P, which is a function of three parameters εi = εai (i = 1, 2, 3):

P (ε1, ε2, ε3) = P(0) +
3∑
i=1

εiL1(Φi) +
1
2

3∑
i,j=1

εiεjL2(Φi,Φj)− ε2
3

2
L1(Φ4). (76)

According to the general variational principle, to find an optimal location of a crack in a body, the approximate
function of the potential energy (76) can be minimized over (ε1, ε2, ε3) ∈ R3. After minimizing, we obtain a system
of three linear equations for the unknown parameters ε1, ε2, and ε3:

L1(Φi) +
3∑
j=1

εjL2(Φi,Φj)− δi3ε3 L1(Φ4) = 0 (i = 1, 2, 3). (77)

The inequality det {L2(Φi,Φj)− δi3L1(Φ4)}ni,j=1 > 0 (n = 1, 2, 3) is condition of solvability of system (77). Rela-
tions (77) are a linearized model that is valid only for small ε1, ε2, and ε3.
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in Singulär Gestörten Gebieten, Akad. Verlag, Berlin (1991).

3. N. F. Morozov, Mathematical Problems of Crack Theory [in Russian], Nauka, Moscow (1984).
4. T. Kato, Perturbation Theory for Linear Operators, Springer, Heidelberg (1966).
5. J. Sokolowski and A. M. Khludnev, “Differentiation of energy functionals in crack theory with possible contact

of sides,” Dokl. Ross. Akad. Nauk, 374, No. 6, 776–779 (2000).
6. A. M. Khludnev and V. A. Kovtunenko, Analysis of Cracks in Solids, WIT-Press, Southampton–Boston (2000).
7. M. Bach, A. M. Khludnev, and V. A. Kovtunenko, “Derivatives of the energy functional for 2D-problems with

a crack under Singorini and friction conditions,” Math. Meth. Appl. Sci., 23, No. 6, 515–534 (2000).
8. J. Sokolowski and J.-P. Zolesio, Introduction to Shape Optimization. Shape Sensitivity Analysis, Springer Verlag,

Berlin–Heidelberg (1992).
9. J. Simon, “Differentiation with respect to the domain in boundary value problems,” Numer. Funct. Anal.

Optim., 2, 649–687 (1980).
10. G. P. Cherepanov, “Crack propagation in continuous media,” Prikl. Mat. Mekh., 31, No. 3, 476–488 (1967).
11. J. R. Rice, “A path independent integral and the approximate analysis of strain concentration by notches and

cracks,” Trans. ASME, Ser. E, J. Appl. Mech., 35, No. 2, 379–386 (1968).
12. J. K. Knowles and E. Sternberg, “On a class of conservation laws in linearized and finite elastostatics,” Arch.

Rational Mech. Anal., 44, No. 3, 187–211 (1972).
13. S. A. Nazarov, “Weight functions and invariant integrals,” in: Computational Mechanics of a Deformable Solid

[in Russian], n.p., Moscow (1990), pp. 17–31.
14. M. Bach, V. A. Kovtunenko, and I. V. Sukhorukov, Numerical Validation of the Shape Optimization Approach

to Quasi-static Crack Propagation, Bericht/Stuttgart Univ., SFB404, No. 29, Stuttgart (2000).
15. P. Grisvard, Singularities in Boundary Value Problems, Springer Verlag, Masson (1991).

762


